

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2018
Homework 5 – Functions and Strings

Assignment: Homework 5 – Functions and Strings
Due Date: Friday, March 16th, 2018 by 8:59:59 PM
Value: 40 points

Collaboration: For Homework 5, collaboration is allowed. Make sure to
consult the syllabus about the details of what is and is not allowed when
collaborating. You may not work with any students who are not taking CMSC
201 this semester.

If you work with someone, remember to note their name, email address, and
what you collaborated on by filling out the Collaboration Log.

You can find the Collaboration Log at http://tinyurl.com/collab201-Sp18.

Remember that all collaborators need to fill out the log each time; even if the
help was only “one way” help.

Make sure that you have a complete file header comment at the top of each
file, and that all of the information is correctly filled out.

File: FILENAME.py

Author: YOUR NAME

Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: YOUR_EMAIL@umbc.edu

Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

http://tinyurl.com/collab201-Sp18

CMSC 201 – Computer Science I for Majors Page 2

Instructions
For each of the questions below, you are given a problem that you must solve
or a task you must complete.

This assignment will focus on using functions to make code that is more
modular. Some of these functions may be useful in later assignments!

At the end, your Homework 5 files must run without any errors.

NOTE: Your filenames for this homework
must match the given ones exactly.

And remember, filenames are case sensitive!

Additional Instructions – Creating the hw5 Directory
During the semester, you’ll want to keep your different Python programs
organized, organizing them in appropriately named folders (also known as
directories).

Just as you did for previous homeworks, you should create a directory to
store your Homework 5 files. We recommend calling it hw5, and creating it

inside the Homeworks directory inside the 201 directory.

If you need help on how to do this, refer back to the detailed instructions in
Homework 1. (You don’t need to make a separate folder for each file. You
should store all of the Homework 5 files in the same hw5 folder.)

CMSC 201 – Computer Science I for Majors Page 3

Coding Standards
Prior to this assignment, you should re-read the Coding Standards, available
on Blackboard under “Assignments” and linked on the course website at the
top of the “Assignments” page.

For now, you should pay special attention to the sections about:

 Comments
o Function header comments
o We’ve given a few of the function headers as examples, but you

will need to create the rest on your own

 Constants
o For Homework 5, you must use constants instead of magic

numbers!!! Magic strings are also forbidden!!!!!!

 Make sure to read the last page of the Coding Standards document,
which prohibits the use of certain tools and Python keywords

o Also, this section states that you may not use built-in functions
or concepts we haven’t covered in class!
If you use a built-in function to solve a problem, you will earn
zero points for that entire problem.

Additional Specifications

For this assignment, you must use main() as seen in your lab2.py file,

and as discussed in class.

For this assignment, you should pay attention to each problem’s instructions
on using “input validation.” For example, the user may enter a negative
value, but your program may require a positive value. Make sure to follow
each part’s instructions about input validation.

If the user enters a different type of data than what you asked for, your
program may crash. This is acceptable.

You must create the functions specified in each problem, and they must be
named exactly as shown.

CMSC 201 – Computer Science I for Majors Page 4

Questions
Each question is worth the indicated number of points. Following the coding
standards is worth 4 points. If you do not have complete file headers and
correctly named files, you will lose points.

hw5_part1.py (Worth 4 points)
For this part of the homework you will create a program that asks the user for
a string and a letter, and then counts how many times that letter appears in
the string. You must create a function called numLetter() that handles

counting the number of times the letter appears, and prints out the results. It
must be case insensitive.

The program must contain a main() and a function called numLetter(),

implemented as described in the function header comment given below.
(You should include this function header comment in your own code.)

numLetter() counts the instances of a letter in a string

Input: phrase; a string of the phrase to search in

letter; a single character to search for

Output: None

Here is some sample output, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

bash-4.1$ python hw5_part1.py

Enter a string: Dogs are good, dogs are great.

Enter a letter to search for: d

There are 3 instances of d in the string

bash-4.1$ python hw5_part1.py

Enter a string: Peter Piper picked a peck of pickled

peppers!

Enter a letter to search for: P

There are 9 instances of P in the string

bash-4.1$ python hw5_part1.py

Enter a string: act tta aga agg aga tat acc atg ggt tct

Enter a letter to search for: G

There are 7 instances of G in the string

CMSC 201 – Computer Science I for Majors Page 5

hw5_part2.py (Worth 5 points)

This part of the homework builds on what you did in part 1. Now, instead of
just counting the number of times the letter occurs, the function will remove
the letter from the phrase, print out the resulting phrase, and return as a value
the number of times the letter occurs.

The program must contain a main() and a function called extract(),

implemented as described in the function header comment given below.
(You should include this function header comment in your own code.)

extract() extracts the letter from the phrase

Input: phrase; a string to extract from

letter; a one character string to extract

Output: count; an int, the number of times letter

is removed from phrase

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw5_part2.py

Enter a string: Dogs are good!

Enter a letter to search for: o

Dgs are gd!

The function found 3 instances of o

bash-4.1$ python hw5_part2.py

Enter a string: Peter Piper picked a peck of pickled

peppers

Enter a letter to search for: P

eter ier icked a eck of ickled eers

The function found 9 instances of P

bash-4.1$ python hw5_part2.py

Enter a string: Here is some sample output

Enter a letter to search for: X

Here is some sample output

The function found 0 instances of X

CMSC 201 – Computer Science I for Majors Page 6

hw5_part3.py (Worth 5 points)

For this part of the homework, you will write code to search through a phrase,
looking for occurrences of a word. Each time an occurrence is found, the
program must report the index at which the word starts as well. After
searching, it must print out the total number of times word was found.

The program must be case insensitive, and must use a function called
inPhrase() that takes in the phrase and word as its two formal

parameters, and returns nothing. All of the searching and printing of results
must happen inside the inPhrase() function.

Inside main(), the program does need to ensure that the word is shorter

than the phrase, re-prompting the user as necessary. You may assume that
both inputs will be at least 1 character.

Here is some sample output, with the user input in blue.
(Yours does not have to match this exactly, but it should be similar.)

bash-4.1$ python hw5_part3.py

Please enter a phrase: Dogs are good, dogs dogs dogs

Please enter a word to search for: DOGS

Found DOGS at index 0

Found DOGS at index 15

Found DOGS at index 20

Found DOGS at index 25

Found DOGS a total of 4 times

bash-4.1$ python hw5_part3.py

Please enter a phrase: Hello!

Please enter a word to search for: Good morning

The word cannot be longer than the phrase.

Please enter a shorter word to search for: Goodbye

The word cannot be longer than the phrase.

Please enter a shorter word to search for: ello

Found ello at index 1

Found ello a total of 1 times

CMSC 201 – Computer Science I for Majors Page 7

hw5_part4.py (Worth 6 points)

Create a program that checks the grammar of a sentence: it must start with a
capital letter, and it must end with ?, !, or . (a question mark, an

exclamation mark, or a period).

The program must use two functions for this: checkCapital() and

checkPunctuation(), both of which take in the complete sentence as their

only formal parameter, and return nothing. Each function must print out
whether the sentence passes or fails their requirement.

Within main(), the user can continue entering sentences to check until they

want to quit, which they do by entering an empty string (hitting Enter without
typing anything).

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw5_part4.py

Enter a sentence (enter nothing to quit): dogs are good

WRONG - Sentences start with a capital letter.

WRONG - Sentences use punctuation.

Enter a sentence (enter nothing to quit): dogs are good.

WRONG - Sentences start with a capital letter.

Correct punctuation!

Enter a sentence (enter nothing to quit): Dogs are good

Correct capitalization!

WRONG - Sentences use punctuation.

Enter a sentence (enter nothing to quit): Dogs are good!

Correct capitalization!

Correct punctuation!

Enter a sentence (enter nothing to quit): Dogs are good?

Correct capitalization!

Correct punctuation!

Enter a sentence (enter nothing to quit): I!

Correct capitalization!

Correct punctuation!

Enter a sentence (enter nothing to quit):

CMSC 201 – Computer Science I for Majors Page 8

hw5_part5.py (Worth 6 points)

Write a program that, within main(),

1. Asks for the number of words the user will enter into the program
2. Then prompts for each of the words (and stores them in a list)

Once all of the words have been entered, the program must print them out
in reverse order from how they were entered, and must also show what the
word would be backwards. (See the sample output for an example.)

The program must use a function called backwards(), that works as

specified in the function header provided below.

Note that this function does not print out any information, but returns the
reversed string to the main() function that called it. The printing out of the

strings will need to occur in main().

backwards() reverses a string and returns the result

Input: forString; a string to reverse

Output: backString; the reversed string

(Again, do not use any built-in function or “trick” that circumvents the point of
this assignment, or you will earn zero points. If you’re not using a loop to
create the backwards string, you’re doing it wrong.)

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 9

Here is some sample output for hw5_part5.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw5_part5.py

How many words would you like to turn backwards: 5

Please enter string #1: dog

Please enter string #2: bird

Please enter string #3: horse

Please enter string #4: fish

Please enter string #5: llama

The string 'llama' reversed is 'amall'.

The string 'fish' reversed is 'hsif'.

The string 'horse' reversed is 'esroh'.

The string 'bird' reversed is 'drib'.

The string 'dog' reversed is 'god'.

bash-4.1$ python hw5_part5.py

How many words would you like to turn backwards: 3

Please enter string #1: Kayak

Please enter string #2: Racecar

Please enter string #3: Stats

The string 'Stats' reversed is 'statS'.

The string 'Racecar' reversed is 'racecaR'.

The string 'Kayak' reversed is 'kayaK'.

bash-4.1$ python hw5_part5.py

How many words would you like to turn backwards: 0

bash-4.1$ python hw5_part5.py

How many words would you like to turn backwards: 1

Please enter string #1: step on NO pets

The string 'step on NO pets' reversed is 'step ON no

pets'.

(Some of these examples are palindromes, which means they are the same
backwards and forwards. If you pay attention to the capitalization, the
reversal becomes a bit clearer.)

CMSC 201 – Computer Science I for Majors Page 10

hw5_part6.py (Worth 10 points)

This final program will allow the user to enter a list of GPAs. The user can
continue entering items indefinitely, stopping only when they enter the
sentinel value “STOP”. The program should ensure that all GPAs entered are
between 0.0 and 4.0, inclusive. (We guarantee that the user will enter at
least one GPA.)

Once all of the GPAs have been entered and saved in a list, the program will
call the average, minimum, and maximum functions, which work as specified
in the function header provided below.

average() calculates and returns the average

Input: numList; a list of floats

Output: avgNum; a float, average of list's numbers

minimum() calculates and returns the minimum

Input: numList; a list of floats

Output: minNum; a float, minimum of list's numbers

maximum() calculates and returns the maximum

Input: numList; a list of floats

Output: minNum; a float, maximum of list's numbers

The functions do not print out any information – instead, they return the value
being calculated/found to the main() function that called them. The

printing out of the values will need to occur in main().

Although these functions are being called on a list of GPA values, they can
be used on any list of numbers.

HINT: Think carefully about how to handle the sentinel value and the casting
of the numbers as they are received from the user.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 11

Here is some sample output for hw5_part6.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw5_part6.py

Please enter a GPA or 'STOP' to stop: 4.1

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: -0.0000000009

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: 6

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: 4.5

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: 1.2

Please enter a GPA or 'STOP' to stop: 3.9

Please enter a GPA or 'STOP' to stop: 3.765

Please enter a GPA or 'STOP' to stop: 2.5

Please enter a GPA or 'STOP' to stop: 3.5

Please enter a GPA or 'STOP' to stop: 3.8

Please enter a GPA or 'STOP' to stop: 2.8

Please enter a GPA or 'STOP' to stop: 1.8

Please enter a GPA or 'STOP' to stop: 0.8

Please enter a GPA or 'STOP' to stop: STOP

The average of the GPA list is 2.673888888888889

The minimum of the GPA list is 0.8

The maximum of the GPA list is 3.9

bash-4.1$ python hw5_part6.py

Please enter a GPA or 'STOP' to stop: 3

Please enter a GPA or 'STOP' to stop: 5

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: -1

That is not a valid GPA. Try again.

Please enter a GPA or 'STOP' to stop: STOP

The average of the GPA list is 3.0

The minimum of the GPA list is 3.0

The maximum of the GPA list is 3.0

CMSC 201 – Computer Science I for Majors Page 12

Submitting
Once your hw5_part1.py, hw5_part2.py, hw5_part3.py,

hw5_part4.py, hw5_part5.py, and hw5_part6.py files are complete,

it is time to turn them in with the submit command. (You may also turn in

individual files as you complete them. To do so, only submit those files

that are complete.)

You must be logged into your account on GL, and you must be in the same
directory as your Homework 5 Python files. To double-check you are in the
directory with the correct files, you can type ls.

linux1[3]% ls

hw5_part1.py hw5_part3.py hw5_part5.py

hw5_part2.py hw5_part4.py hw5_part6.py

linux1[4]% █

To submit your Homework 5 Python files, we use the submit command,

where the class is cs201, and the assignment is HW5. Type in (all on one

line) submit cs201 HW5 hw5_part1.py hw5_part2.py

hw5_part3.py hw5_part4.py hw5_part5.py hw5_part6.py and

press enter.

linux1[4]% submit cs201 HW5 hw5_part1.py hw5_part2.py

hw5_part3.py hw5_part4.py hw5_part5.py hw5_part6.py

Submitting hw5_part1.py...OK

Submitting hw5_part2.py...OK

Submitting hw5_part3.py...OK

Submitting hw5_part4.py...OK

Submitting hw5_part5.py...OK

Submitting hw5_part6.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your homework was submitted by following the directions
in Homework 0. Double-check that you submitted your homework correctly,
since an empty file will result in a grade of zero for this assignment.

